Porenbeton

Produktgruppeninformation

Begriffsdefinition

Porenbeton gehört wie Kalksandstein zu den dampfgehärteten (hydrothermal gehärteten) Baustoffen. Obwohl es sich bei Porenbeton streng genommen nicht um einen Beton handelt (Beton ist ein Gemisch aus Zement, Gesteinskörnungen und Wasser), wird er häufig den Leichtbetonen zugeordnet.

Eine frühere Bezeichnung für Porenbeton war "Gasbeton". In Frankreich wird er mit "béton cellulaire" und im anglikanischen Raum als "autoclaved aerated concrete" bezeichnet.

Aus Porenbeton werden sowohl bewehrte Bauteile (Montagebauteile) als auch Mauersteine hergestellt.

Wesentliche Bestandteile

Porenbetonsteine bestehen aus Quarzsand, gemahlenem Branntkalk und / oder Zement (zumeist Portlandzement, aber auch anderen Zementsorten) und Wasser. Branntkalk und Zement stellen das Bindemittel dar. Bei bestimmten Rezepturen werden zusätzlich geringe Anteile Gips oder Anhydrit beigegeben. Als Porosierungsmittel wird Aluminiumpulver oder –paste eingesetzt.

Größere Elemente aus Porenbeton erhalten zusätzlich eine statisch nicht anrechenbare Transport­bewehrung. Als „bewehrt“ gelten nur jene Porenbeton-Montagebauteile, die eine Bewehrung zur Aufnahme von Zugkräften enthalten. Diese Bewehrung besteht aus Stahldraht, der durch Punktverschweißung zu Matten verbunden und ggf. zu Körben gebogen und zusammengefügt wird (Schneider, 2008).

Charakteristik

Der Porenbeton zeichnet sich durch niedrige Wärmeleitfähigkeit und Rohdichte bei gleichzeitig hoher Festigkeit aus. Porenbetonbauteile können auch mit tragender Funktion bei bis zu neungeschoßigen Gebäuden eingesetzt werden. Die Rohdichte kann bei der Herstellung stufenlos durch die Dosierung von Bindemittel und Treibmittel gesteuert werden.

Besonders wichtige Eigenschaft hinsichtlich Umwelt- und Gesundheitsrelevanz

Porenbeton besteht aus natürlich vorkommenden Rohstoffen ohne Zusatz chemischer Zusatzstoffe. Die Grundstoffe für die Herstellung von Porenbeton sind ausreichend vorhanden. Aus einem Kubikmeter fester Rohstoffe können bis zu fünf Kubikmeter Porenbeton hergestellt werden.

Bei der Herstellung anfallender Porenbetonbruch und sortenreines Recyclingmaterial von der Baustelle kann wieder in den Produktionsprozess eingearbeitet werden.

Lieferzustand

Porenbeton wird in folgenden Formaten geliefert:

  • Wandbaustoffe

    • Steine
    • Plansteine
    • Spezialelemente (Thermofuß, U-Steine, Stürze etc.)

  • Wandelemente

    • Wandplatten
    • Wandtafeln
    • Systemwandelemente

  • Dach- und Deckensystem

    • Decken- und Dachplatten
    • Dachelemente
    • Spezialelemente (Deckenrostverblender etc.)

Anwendungsbereiche (Besonderheiten)

Baustoffe aus Porenbeton werden im Wand-, Dach- und Deckenbereich für tragende oder nicht tragende Zwecke eingesetzt. Thermofüße aus Porenbetonstein vermeiden Wärmebrücken zwischen Kellerdecke und Wandanschlüssen.

Porenbeton eignet sich für Einfamilien- und Reihenhäuser ebenso wie für mehrgeschoßige Bauten. Er wird im Wohn-, Büro- und Gewerbebau eingesetzt.

 

  • Plansteine für Mauerwerk
  • Planbauplatten
  • Planelemente
  • Dach und Deckenplatten
  • Geschosshohe Wandtafeln
  • Bewehrte Wandplatten
  • Fertigteilträger, -stürze und -stützen

Quellen

  • Schneider, Ulrich (2008): „Porenbeton Bericht 4: Brandverhalten von Porenbetonbauteilen“, Hrsg.: Bundesverband Porenbeton, 2. Auflage, S 10-16
  • Zwiener/Mötzl (2006): Ökologisches Baustoff-Lexikon, 3. Auflage, C.F. Müller 2006
Porenbeton
Porenbeton

Planungs- und Ausschreibungshilfen

Grundsätzliches

WECOBIS informiert produktneutral. An dieser Stelle soll der Nutzer jedoch eine Hilfestellung dazu erhalten, ob sich Produkte innerhalb einer Produktgruppe gegenüber anderen hinsichtlich ihrer Umwelt- und Gesundheitsrelevanz auszeichnen.

Damit wird keine Aussage über die technischen Einsatzmöglichkeiten der jeweiligen Produkte getroffen.

Derzeit finden sich neben produktgruppenspezifischen Informationen Hinweise und wichtige Links zum Bewertungssystem Nachhaltiges Bauen (BNB), zu UBA-Ausschreibungsempfehlungen, Umweltdeklarationen und REACH.
Der Bereich Planungs- und Ausschreibungshilfen soll kontinuierlich weiterentwickelt und auf die Bedürfnisse der Planer abgestimmt werden. Für 2014 ist ein weiteres Entwicklungsprojekt für diesen Bereich vorgesehen.

Bewertungssystem Nachhaltiges Bauen (BNB) / Kriterium 1.1.6

Mit dem Bewertungssystem Nachhaltiges Bauen für Bundesgebäude (BNB) steht ein zum Leitfaden Nachhaltiges Bauen ergänzendes ganzheitliches quantitatives Bewertungsverfahren zur Verfügung.
Das BNB zeichnet sich durch einen Kriterienkatalog aus, nach dem Gebäude nach ökologischen, ökonomischen und soziokulturellen Qualitäten, sowie den technischen und prozessualen Aspekten bewertet werden. (detaillierte Informationen siehe www.nachhaltigesbauen.de).

Das BNB-Kriterium 1.1.6 befasst sich dabei mit den Risiken für die lokale Umwelt.

Für den Einsatz von Massivbaustoffen enthält BNB-Kriterium 1.1.6 nach derzeitigem Kenntnisstand keine Anforderungen.

Hinweis:
Eine abschließende Beurteilung im Rahmen des Bewertungssystems und des genannten Kriteriums erfolgt jedoch grundsätzlich in Abhängigkeit weiterer baulicher Gegebenheiten (z.B. eingebaute Menge).

UBA-Ausschreibungsempfehlungen

Auf den Internet-Seiten des Umweltbundesamtes (UBA) findet sich der „Informationsdienst für umweltfreundliche Beschaffung“, u.a. mit Informationen und Ausschreibungsempfehlungen zu einzelnen Bauproduktgruppen.

Für Massivbaustoffe finden sich dort derzeit (Stand 08/2013) noch keine Informationen. Es lohnt sich aber, die Seiten zu besuchen, da diese regelmäßig weiterentwickelt werden. Die Ausschreibungsempfehlungen des UBA orientieren sich an den jeweiligen Vorgaben eines zugehörigen Blauen Engels (s. Reiter Zeichen & Deklarationen).

Zeichen / Labels zur Umwelt- und Gesundheitsrelevanz (z.B. Blauer Engel, Giscode)

Unter dem Reiter Zeichen & Deklarationen finden sich eine Übersichtstabelle, weiterführende Informationen und Links zu Zeichen und Labels, die diese Produktgruppe betreffen können. Auch damit lassen sich Unterschiede von Produkten innerhalb einer Produktgruppe hinsichtlich ihrer Umwelt- und Gesundheitsrelevanz feststellen.

REACH / CLP

Die REACH-Verordnung regelt die Herstellung, das Inverkehrbringen und den Umgang mit Industriechemikalien. Zur Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen, dient die CLP-Verordnung (Verordnung über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen), um ein hohes Schutzniveau für die menschliche Gesundheit und die Umwelt zu gewährleisten.

Wird ein Produkt nicht als Stoff oder Gemisch, sondern als Erzeugnis eingestuft, ist kein Sicherheitsdatenblatt (SDB) erforderlich und Gefahrstoffbezeichnungen entfallen. Lediglich besonders besorgniserregende Stoffe (SVHC) müssen ausgewiesen werden. Für diese Informationen besteht eine Auskunftspflicht. Sie müssen aber nicht in Form eines Sicherheitsdatenblattes nach den Kriterien des Anhangs II der REACH-Verordnung gegeben werden.

Massivbaustoffe werden als Erzeugnis eingestuft.
Informationen und Unterstützung zu den Auskunftsrechten finden sich unter www.reach-info.de.

Gefahrstoffverordnung

Gemäß Minimierungs- und Substitutionsgebot der GefStoffV ist grundsätzlich das Produkt mit den geringstmöglichen Belastungen zu verwenden.

Werden für eine Produktgruppe GISBAU Produkt-Codes oder GISCODES vergeben, lassen sich z.B. dadurch Unterschiede innerhalb der Produktgruppe feststellen (s. Reiter Zeichen & Deklarationen).
Porenbeton

Umweltdeklarationen

Zeichen und Labels zur Umwelt- und Gesundheitsrelevanz

PorenbetonStand
08/2013
Internet-Adresse
     
Umweltzeichen (Blauer Engel) - http://www.blauer-engel.de/
EU-Umweltzeichen (Blume) - http://www.eco-label.com/
Österreichisches Umweltzeichen -1 http://www.umweltzeichen.at/
GISBAU Produkt-Code ./. http://www.wingis-online.de/wingisonline/

Gütezeichen RAL-GZ

- http://www.ral.de/
natureplus-Qualitätszeichen + http://www.natureplus.org/
Zeichen / Labels aus Programmen für spezielle Produktgruppen:
FSC-Siegel ./.  http://www.fsc-deutschland.de/
Emicode ./.  http://www.emicode.com/
GUT-Signet ./. http://www.gut-ev.org/
+ Zeichen / Label für diese Produktgruppe vorhanden
- Zeichen / Label für diese Produktgruppe nicht vorhanden
./. Zeichen / Label für diese Produktgruppe nicht relevant
x Produkte aus dieser Produktgruppe können die Kriterien des Zeichens/Labels definitionsgemäß nicht erfüllen

1 Richtlinie für diese Produktgruppe vorhanden, aber keine ausgezeichneten Produkte

Die VERBRAUCHER INITIATIVE e. V. betreibt ein Internet-Portal mit umfangreicher Label-Datenbank (www.label-online.de). Die Label werden dort beschrieben und anhand von Kriterien hinsichtlich Nachhaltigkeit (umweltgerecht, sozial verträglich, gesundheitlich unbedenklich) bewertet.

Österreichisches Umweltzeichen / Richtlinie UZ 39 Mineralisch gebundene Bauprodukte
Mauersteine, Fertigteilelemente etc. mit dem Umweltzeichen müssen einen bestimmten Prozentsatz an nachwachsenden Rohstoffen oder Recyclat enthalten. Rohstoffe aus gefährlichen Abfällen sowie kontaminierte Böden, Bauteile und Baurestmassen dürfen nicht enthalten sein. Bei der Produktion der Baumaterialien wird der Einsatz von mindestens 25 Prozent erneuerbarer Energieträger (Biomasse, Geothermie, Sonne, Wind, Strom aus Wasserkraftwerken), die der UZ-Richtlinie 46 „Grüner Strom“ entsprechen, gefordert.

Derzeit (Stand 08/2013) sind keine Produkte aus Porenbeton nach dieser Richtlinie ausgezeichnet.

Download der aktuellen Vergabegrundlagen und Liste der Zeichennehmer
http://www.umweltzeichen.at/cms/home/produkte/bauen-und-wohnen/content.html?rl=67

natureplus Qualitätszeichen / Vergaberichtlinie RL1105 Porenbetonsteine und -elemente
In Verbindung mit den Vergaberichtlinie RL1100 (Mauer- und Mantelsteine) und RL0000 (Basiskriterien für alle Produkte) können Porenbetonprodukte unter Einhaltung vorgegebener Kriterien u.a. hinsichtlich Zusammensetzung, Rohstoffgewinnung, Nutzung und Entsorgung mit dem natureplus Qualitätszeichen gekennzeichnet werden.

Geprüfte Porenbetonsteine müssen zu mindestens 95 % aus mineralischen Rohstoffen bestehen, bei der Rohstoffgewinnung sind strenge Naturschutzbestimmung zu beachten, die Herstellung muss emissionsarm erfolgen. Die Produkte werden auf problematische Inhaltsstoffe und auf potenzielle Emissionen in die Raumluft untersucht.

Download der aktuellen Vergabegrundlagen und Liste der Zeichennehmer
http://www.natureplus.org/de/natureplus/vergaberichtlinien/
http://www.natureplus.org/de/produkte/

Umweltproduktdeklarationen

Für Produkte mit Umweltproduktdeklaration (Environmental Product Declaration, EPD) liegen umfassende Informationen zu wichtigen Umweltwirkungen wie z. B. Ressourcenverbrauch, globaler Treibhauseffekt, Ozonabbau oder Versauerung von Böden und Gewässern vor (genaue Erläuterungen siehe Lexikon und Textteil „Umweltproduktdeklarationen“). Diese bilden die Datengrundlage für die ökologische Gebäudebewertung.

PorenbetonStand
08/ 2013
Download
     
PCR-Dokument* + Download PCR (IBU Institut Bauen und Umwelt e.V.)2 
Branchen-EPD* -  
+ für diese Produktgruppe vorhanden
- für diese Produktgruppe nicht vorhanden

* WECOBIS informiert produktneutral. Aus diesem Grund wird an dieser Stelle sofern vorhanden nur auf PCR-Dokumente (Produktgruppenregeln) und Branchen-EPDs verwiesen. Dies schließt nicht aus, dass für einzelne Produkte EPDs vorliegen können. Weitere Informationen und Downloads finden sich z. B. auf den Seiten des IBU Institut Bauen und Umwelt e. V.. → auch Lexikon Umweltproduktdeklaration

2 Das PCR-Dokument des IBU für Porenbeton ist nach vorheriger Registrierung im IBU-Datenbanksystem abrufbar.

Ökobau.dat / Umweltindikatoren

Ökobau.dat ist ein Baustein des Informationsportals Nachhaltiges Bauen in der Rubrik Baustoff- und Gebäudedaten und enthält Datensätze mit Umweltindikatoren von Bauprodukten. Die in der Ökobau.dat beschriebenen Umweltindikatoren bilden die Grundlage der im Bewertungssystem Nachhaltiges Bauen für Bundesgebäude (BNB) vorgeschriebenen Berechnung von Ökobilanzen auf Gebäudeebene.

Der hierfür betrachtete Lebenszyklus eines Bauproduktes gliedert sich in die Herstellung und die Nachnutzungsphase. Die Bewertung basiert auf Indikatoren der

  • Sachbilanz / Input (PEIr, PEInr, Sekundärbrennstoffe, Wassernutzung)
  • Sachbilanz / Output (Abraum, Hausmüll/Gewerbeabfälle, Sonderabfälle)
  • Wirkbilanz (ADP, EP, ODP, POCP, GWP, AP)

Diese umfangreiche Sammlung verifizierter Daten steht unter http://www.nachhaltigesbauen.de/oekobaudat/ zur Ansicht zur Verfügung.
Download des gesamten Datensatzes unter → Ökobau.dat
Datensätze zu Porenbeton siehe → 1.3.03 Mineralische Baustoffe → Steine und Elemente → Porenbeton

Quellen

Porenbeton
Porenbeton

Technisches

Baustoffklasse nach DIN 4102-1

A1

Euroklasse nach DIN EN 13501-1

A1

Technische Regeln (DIN, EN)

DIN EN 771-4

Festlegungen für Mauersteine - Teil 4: Porenbetonsteine. Deutsche Fassung EN 771-4:2011

DIN V 20000-404

Anwendung von Bauprodukten in Bauwerken, Teil 404: Regeln für die Verwendung von Porenbetonsteinen nach DIN EN 771–4:2005-5. Ausgabedatum: 2006-01

DIN V 4165-100

Porenbetonsteine, Teil 100: Plansteine und Planelemente mit besonderen Eigenschaften. Ausgabedatum: 2005-10

DIN 4166

Porenbeton-Bauplatten und Porenbeton-Planbauplatten. DIN 4166:1997 10

DIN 4223-100

Normentwurf: Anwendung von vorgefertigten bewehrten Bauteilen aus dampfgehärtetem Porenbeton - Teil 100: Eigenschaften und Anforderungen an Baustoffe und Bauteile. DIN 4223-100:2008 09

DIN 4223-101

Normentwurf: Anwendung von vorgefertigten bewehrten Bauteilen aus dampfgehärtetem Porenbeton - Teil 101: Entwurf und Bemessung

DIN 4223-101:2008 09

DIN 4223-102

Normentwurf: Anwendung von vorgefertigten bewehrten Bauteilen aus dampfgehärtetem Porenbeton - Teil 102: Anwendung in Bauwerken. DIN 4223-102:2008 09

DIN 4223-103

Normentwurf: Anwendung von vorgefertigten bewehrten Bauteilen aus dampfgehärtetem Porenbeton - Teil 103: Sicherheitskonzept. DIN 4223-103:2008 09

DIN 4223-1

Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton - Teil 1: Herstellung, Eigenschaften, Übereinstimmungsnachweis. DIN 4223: 2003-12

DIN 4223-2

Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton - Teil 2: Bauteile mit statisch anrechenbarer Bewehrung; Entwurf und Bemessung.
DIN 4223: 2003-12

DIN 4223-3

Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton - Teil 3: Wände aus Bauteilen mit statisch nicht anrechenbarer Bewehrung; Entwurf und Bemessung. DIN 4223-3:2003 12

DIN 4223-4

Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton - Teil 4: Bauteile mit statisch anrechenbarer Bewehrung; Anwendung in Bauwerken. DIN 4223-4:2003 12

DIN 4223-5

Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton - Teil 5: Sicherheitskonzept. DIN 4223-5:2003 03

DIN EN 12602

Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton Deutsche Fassung EN 12602:2008

DIN EN 12602/A1

Normentwurf: Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton (Änderung) Deutsche Fassung EN 12602:2008/Fpr/A1:2012

Erläuterungen zu den technischen Regeln finden sich z.B. in Schneider, 2008 (Kap. 2.3 Stand der Normung von Bauteilen aus Porenbeton, S 12f)

Bauregelliste

Das Deutsche Institut für Bautechnik stellt in den Bauregellisten A, B und C die technischen Regeln für Bauprodukte und Bauarten sowie bauaufsichtlich geregelte und nicht geregelte Bauprodukte und Bauarten auf.
Nach Zustimmung der obersten Bauaufsichtsbehörden der Länder wird die Bauregelliste bekannt gegeben. Erwerb und weiterführende Informationen zu Bauregelliste und ihren Regelungsbereichen siehe unter → www.dibt.de
Eine Darstellung und Erläuterungen zur Klassifizierung von Bauprodukten siehe im Lexikon → Klassifizierung von Bauprodukten

Listung in der Bauregelliste 2013:

  • Porenbetonsteine nach EN 771-4: Bauregelliste B Teil 1 lfd.-Nr. 1.2.1.4
  • Porenbeton-Bauplatten und Porenbeton-Planbauplatten nach DIN 4166: Bauregelliste A Teil 1 lfd.-Nr. 9.2
  • Vorgefertigte bewehrte Bauteile aus dampfgehärtetem Porenbeton nach DIN 1045-4: Bauregelliste A Teil 1 lfd.-Nr. 1.6.24

Quellen

  • Schneider, Ulrich (2008): „Porenbeton Bericht 4: Brandverhalten von Porenbetonbauteilen“, Hrsg.: Bundesverband Porenbeton, 2. Auflage, S 10-16 und S 46 (Quelle für Technische Daten)
  • Bundesverband Porenbetonindustrie e.V.: 
    Online-Quelle [abgerufen am 31.05.2013} (Quelle für Normenliste)
  • Normenverzeichnis des Austrian Standard Institute (ASI).
    Online-Quelle [abgerufen am 23.05.2013]
  • Bauregelliste A, Bauregelliste B und Liste C. Ausgabe 2013/1. Mitteilungen des DIBt. 17.April.2013. Online-Quelle [abgerufen im September 2013]
Porenbeton

Literaturtipps

Bundesverband Porenbetonindustrie e.V.:
Online-Quelle [abgerufen im August 2013]

Homann, Martin (2008): Porenbeton Handbuch. Hrsg.: Bundesverband Porenbeton, 6. Auflage. Zugriff: Online-Quelle [abgerufen im August 2013]

Schneider, Ulrich (2008): „Porenbeton Bericht 4: Brandverhalten von Porenbetonbauteilen“, Hrsg.: Bundesverband Porenbeton, 2. Auflage

Porenbeton

Rohstoffe / Ausgangsstoffe

Hauptbestandteile

Zusammensetzung eines Porenbetonsteines (ohne Wasser)

Rohstoff (kg/m3)

Rohdichte (kg/m3)

500

500

600

Quarzsand

350

330

420

Branntkalk

100

35

110

Zement

25

90

30

Aluminiumpulver

0,5

0,5

0,4

Wasser

330

330

440

Anhydrit

-

20

-

Quelle: Schneider (2008), mittlere Spalte (Rohdichte 500 kg/m3)

Die Anteile von Zement und Branntkalk im Porenbeton sind sehr variabel. Porenbetonsteine können außerdem einen relevanten Anteil an Mehl aus Porenbetonbruch enthalten.

Bewehrter Porenbeton enthält zusätzlich ca. 24 kg Bewehrungsstahl pro m³ (Quelle: produktspezifische EPD des IBU).

Umwelt- und Gesundheitsrelevanz

Porenbeton 2.1.2

Zusammensetzung eines Porenbetonsteines nach Rohstoffherkunft

 

Gewinnung der Primärrohstoffe

Porenbetonwerke liegen in unmittelbarer Nähe der erforderlichen Sandvorkommen. Quarzsand wird meist im Nassverfahren mit Baggern aus Flüssen oder Seen gewonnen. Bei der Gewinnung und Aufbereitung von Quarzsand bestehen an allen Arbeitsplätzen mit unmittelbarem Zugang zum Material Expositionen gegenüber Quarz-A-Staub (BGIA-Report 8/2006, Weiteres zu Quarzstaub siehe Verarbeitung / Arbeitshygienische Risiken.

Branntkalk wird durch Brennen von Kalkstein hergestellt (--> Kalk)

Der am häufigsten für Porenbeton verwendete Portlandzement (CEM I) besteht zu mindestens 95 % aus Portlandzementklinker, der durch Brennen von gemahlenen Kalk-, Ton- bzw. Mergelgesteinen bei Temperaturen von etwa 1450 °C hergestellt wird (--> Zement).

Verfügbarkeit

Die Rohstoffe sind in ausreichendem Maße vorhanden.

Verwendung von Recyclingmaterialien / Produktionsabfällen

Neben den Primärrohstoffen enthält Porenbeton auch wiederverwendbaren Porenbeton aus der Produktion und sortenreines Recyclingmaterial von der Baustelle.

Radioaktivität

Natürliche Radionuklide in Baustoffen können vorkommen in Abhängigkeit von Material und Zuschlagstoffen. Zum Schutz der Bevölkerung vor Strahlenbelas­tungen werden in Deutschland seit mehr als 20 Jahren Untersuchungen und Bewertungen der radioaktiven Stoffe in Baumaterialien durchge­führt. 
Bei den derzeit handelsüblichen Bauproduktgruppen sind aus der Sicht des Strahlenschutzes keine Einschränkungen erforderlich. Allerdings ist auch weiterhin die vorgegebene Beschränkung des Anteils industrieller Rückstände als Zuschlag zu beachten, siehe ausführliche BfS-Informationen zu Baustoffen unter http://www.bfs.de/de/ion/anthropg/baustoffe.html.

In einer Studie des Bundesamt für Strahlenschutz (BfS) wurden für die Baustoffgruppe Porenbeton folgende möglichen Dosisbeiträge gemessen:

  • Dosisbeiträge durch äußere Gammastrahlung (Indexwert I): 0,08 – 0,27 (< 0,5)
  • Dosisbeiträge durch äußere Gammastrahlung (ohne Untergrundabzug): 0,1 - 0,3 mSv/a (< 1 mSv/a)
  • Dosisbeiträge durch äußere Gammastrahlung (nach Untergrundabzug): <0,05 mSv/a (<< 1 mSv/a)
  • Dosisbeiträge durch Radonexhalation (Radonkonzentration im Modellraum): 1 - 6 Bq/m3
    (weniger als 8 Bq/m3 und damit gering)
  • Dosisbeiträge durch Radoninhalation (Interne Exposition): 0,02 - 0,1 mSv/a (weniger als 0,1 mSv/a und damit sehr gering)

Eine Übersicht über mögliche Dosisbeiträge durch äußere Gammastrahlung aus Baumaterialien, sowie eine Übersicht über mögliche Dosisbeiträge durch Radonexhalation aus Baumaterialien (Messprogramm BfS-bbs 2007-09) erhalten Sie hier.

Landinanspruchnahme (Landuse)

Die Rohstoffe werden im Tagebau gewonnen. Die Abbauflächen werden nach Beendigung der Abbautätigkeiten rekultiviert oder renaturiert.

Quellen

  • Schneider, Ulrich (2008): „Porenbeton Bericht 4: Brandverhalten von Porenbetonbauteilen“, Hrsg.: Bundesverband Porenbeton, 2. Auflage, S 10-16
  • Gehrcke, K., Hoffmann, B., Schkade, U., Schmidt, V., Wichterey, K.: „Natürliche Radioaktivität in Baumaterialien und die daraus resultierende Strahlenexposition“, Bundesamt für Strahlenschutz
  • Bundesverband Porenbeton. Online-Quelle (abgerufen im August 2013)
  • BGIA-Report 8/2006: Quarzexpositionen am Arbeitsplatz. Hrsg: Hauptverband der gewerblichen Berufsgenossenschaft (HVBG). Online-Quelle [abgerufen im September 2013]
Porenbeton

Herstellung

Prozesskette

Porenbeton Prozesskette

Prozesskette nach Porenbeton Handbuch (Homann 2008)

Herstellungsprozess

Porenbeton

Der aufbereitete Quarzsand (Feinmahlung in Kugelmühlen im Trockenverfahren oder Aufbereitung zu Schlämmen im Naßverfahren) wird mit den Bindemitteln (gemahlener Branntkalk und/oder Zement) unter Zugabe von Wasser zu einer wässrigen Suspension gemischt. Kurz vor dem Abfüllen der Suspension in die Gießformen wird das Treibmittel (Aluminiumpulver bzw. -paste) zugegeben. Das Wasser löscht unter Wärmeentwicklung den Kalk. Das Aluminium reagiert mit dem alkalischen Wasser der Suspension. Es bildet sich Wasserstoff, der die Poren (Durchmesser der Makroporen ca. 0,5 - 1,5 mm) erzeugt und ohne Rückstände noch im Werk entweicht. Aus 1m³ Rohstoff werden je nach Rohdichteklasse bis zu 5m³ Porenbeton hergestellt.

Nach dem ersten Abbinden entstehen halbfeste Rohblöcke, die maschinell in entsprechende Steinformate zugeschnitten werden. Dabei anfallende ungehärtete Produktionsrückstände werden als Rückgutschlamm der Produktion wieder zugeführt.

Zur Dampfhärtung werden die zuvor geschnittenen Rohblöcke in Autoklaven (Härtekessel) gefahren und für ca. 6 - 12 Stunden einer Sattdampf-Atmosphäre von 180°C - 200°C bei einem Druck von ca. 8 - 12 bar ausgesetzt. Dampf und Kondensat werden nach Abschluß des Härtungsprozesses in einen nächsten Autoklaven bzw. in einen Speicher geleitet. Der ausgehärtete Porenbeton besteht im wesentlichen aus hochfestem Kalziumsilikathydrat und Luftporen.

Bewehrter Porenbeton

Die Bewehrung (in Form von Matten oder Körben) wird in einem Tauchbad korrosions-schutzbehandelt, da der Porenbeton wegen seiner hohen Porosität keinen ausreichenden Schutz bildet. Als Korrosionsschutz dient eine kunststoffvergütete Zementschlämme, Wasserlack, oder Bitumen mit einer Beimischung von Quarz zur Erhöhung der Haftung.
Die Bewehrung wird vor oder nach dem Eingießen der Betonsuspension in die Formen eingebracht. Die nachfolgenden Verfahrensschritte, wie das Zuschneiden der Bauteile und die anschließende Dampfhärtung entsprechen denen der Herstellung von Porenbetonsteinen.

Umweltindikatoren / Herstellung

Einheitliche Werte zu Umweltindikatoren in WECOBIS soll zukünftig ausschließlich die Datenbank Ökobau.dat des Informationsportals Nachhaltiges Bauen des BMUB liefern.

Die Ökobau.dat stellt Umweltprofile für Bauprodukte bereit, die als erforderliche Datengrundlage für die Lebenszyklusanalyse eingesetzt werden. Für Bauprodukte gibt es Herstellungs- und End-of-Live- Datensätze.
Weiterführende Informationen zur Ökobau.dat im Zusammenhang mit dieser Produktgruppe finden sich in WECOBIS unter Fachinformationen / Reiter Umweltdeklarationen → Ökobau.dat / Umweltindikatoren

Da in der Herstellung von Bauprodukten ein großer Anteil der verursachten Umweltbelastungen auf den Verbrauch von nicht erneuerbaren Energieträgern zurückzuführen ist, stellt die Graue Energie (kumulierter Primärenergieaufwand nicht erneuerbar) dafür einen guten Indikator dar.

Im Kapitel Energieaufwand finden sich ggf. allgemeine Informationen zum Thema, die die Produktgruppe prägen.

Energieaufwand

Die Dampferzeugung für die Autoklavierung erfolgt überwiegend mit Erdgas. Der Energiebedarf kann durch Wärmerückgewinnung aus dem Kondensat und durch Weiternutzung des beim Abfahren des Autoklaven entstehenden Dampfes reduziert werden.

Die Bereitstellung der thermischen Energie für die Dampfhärtung, die Kalkherstellung und die Zementherstellung benötigen den größten Teil an Primärenergie. Die Aufteilung zwischen den drei Prozessen im konkreten Produkt ist abhängig von den individuellen Rezepturen und Herstellungsverfahren. Sie liegt zwischen ungefährer Gleichverteilung und 50:50 Aufteilung zwischen Dampferzeugung einerseits und Kalk- und Zementherstellung andererseits.

Charakteristische Emissionen

Bei der Porenbetonproduktion wird vor allem Wasserdampf emittiert. Als Energieträger wird vorwiegend Erdgas benutzt, wodurch Schadstoffe in den Abgasen gering gehalten werden. Die Emissionen von Stickoxiden oder Schwefeldioxiden sind gering im Vergleich zu den Emissionen bei der Herstellung der Vorprodukte (v.a. Zement).

Maßnahmen Gesundheitsschutz

Bei der Verarbeitung von Quarzsand bestehen Expositionsrisiken gegenüber Quarz-A-Staub an allen Arbeitsplätzen mit unmittelbarem Zugang zum Rohmaterial (BGIA-Report 8/2006).

(Weiteres → Verarbeitung / Arbeitshygienische Risiken)

Maßnahmen Umweltschutz

Der Umstieg auf schadstoffarme Energieträger (Erdgas) hat zu einer Reduktion der Emissionen (Schwefeldioxid, Kohlendioxid und Stickoxide) bei der Porenbetonproduktion geführt.

Abwässer werden neutralisiert.

Transport

Die Produktionsstandorte befinden sich in der Nähe der Quarzsandvorkommen. Alle weiteren Grundstoffe stammen aus einem Umkreis von maximal 200 Entfernungskilometern zum Werk (Homann, 2008).

Quellen

  • Homann, Martin (2008): Porenbeton Handbuch. Hrsg.: Bundesverband Porenbeton, 6. Auflage.  Online-Quelle [abgerufen im August 2013]
  • Schneider, Ulrich (2008): „Porenbeton Bericht 4: Brandverhalten von Porenbetonbauteilen“, Hrsg.: Bundesverband Porenbeton, 2. Auflage, S 10-16
  • BGIA-Report 8 /2006: Quarzexpositionen am Arbeitsplatz. Hrsg: Hauptverband der gewerblichen Berufsgenossenschaft (HVBG). Online-Quelle [abgerufen im
Porenbeton

Verarbeitung

Technische Hinweise / Verarbeitungsempfehlungen

Mauersteine aus Porenbeton werden mithilfe von Dünnbettmörtel (Mauermörtel) vermauert. Grundsätzlich kann Porenbeton mit allen Putzmörteln verkleidet werden.

Porenbeton wird mit Sägen zerteilt. Das Schneiden mit schnellrotierenden Geräten ist wegen der Stauberzeugung ungeeignet. Beim Schneiden mit schnellrotierenden Geräten kommt es außerdem zu Lärmemissionen.

Rationalisierungsansätze wie die Herstellung großformatiger Steine, die mit Minikran versetzt werden, entlasten den Maurer und beugen Gesundheitsschäden vor. Das täglich durch körperlichen Einsatz bewegte Gewicht pro Maurer kann damit von knapp 2000 auf 500 kg gesenkt werden (Homann, 2008). Bauelemente aus Porenbeton mit einer Masse über 25 kg müssen mit Hilfe von Hebezeugen versetzt werden.

Arbeitshygienische Risiken

Allgemeines

Beim Schneiden der Steine kann es zu Staubbelastungen kommen. Neben E-Staub (einatembare Fraktion) und A-Staub (alveolengängie Fraktion) entsteht auch alveolengängiger Quarzstaub, da quarzhaltige Sande für die Porenbetonherstellung verwendet werden. Einatembarer Quarz kann Krebserkrankungen der Atemwege verursachen. Beim Porenbeton kann der Quarzgehalt bis zu 30 % betragen, der Quarzgehalt im A-Staub beim Sägen und Fräsen bis zu 15 % betragen (BGIA-Report 8/2006).

Schutzmaßnahmen wie z.B. staubarme Arbeitsverfahren sind in Kapitel 4 der TRGS 559 „Mineralische Stäube“ zu finden. Zur Verminderung der Staubbelastung können Steine z.B. nass geschnitten, entstehender Staub direkt erfasst und die Baustelle gereinigt werden.

Die bei der Verarbeitung von Porenbeton eingesetzten Dünnbettmörtel sind mineralische Mörtel, die außer Methylzellulose kaum organische Bestandteile enthalten (Homann, 2008). Seit 2005 müssen zementhaltige Mörtel grundsätzlich chromatarm sein (maximaler Gehalt an löslichen Chrom-VI 2 mg/kg). Das Risiko an Mauerkrätze zu erkranken ist dadurch stark vermindert (WINGIS online). Gesundheitsgefahren gehen von der Alkalität (hoher pH-Wert) zementhaltiger Mörtel aus.

AGW-Werte

Staubgrenzwerte:

  • 10 mg/m3 mineralischer Staub, einatembare Fraktion (E-Staub)
  • 3 mg/m3 mineralischer Staub, alveolengängige Fraktion (A-Staub)

Da Quarzstaub mit Erscheinen der TRGS 906 als krebserzeugend K1 eingestuft wurde, ist der ursprüngliche Arbeitsplatzgrenzwert von 0,15 mg/m3 nicht mehr rechtsgültig. In der Handlungs­anleitung für die arbeitsmedizinische Vorsorge der Deutschen Gesetzlichen Unfallversicherung (BGI/GUV-I 504-1.1, Juni 2009) werden daher Arbeitsverfahren genannt, bei denen der Arbeitgeber eine Arbeitsmedizinische Vorsorgeuntersuchung (G 1.1 Mineralischer Staub, Teil 1: Quarzhaltiger Staub) durchführen lassen muss. Pflichtuntersuchungen sind bei „Schleif-, Schneid- (Trenn-), Schlitz- und Fräsarbeiten von quarzhaltigen Materialien mit schnell laufenden Maschinen“ erforderlich. Bei anderen Arbeiten mit Quarzstaubkontakt sind G 1.1 Untersuchungen anzubieten (BG Bau, 2011).

In der TRGS 559 „Mineralische Stäube“, Anlage 1, Tabelle 1 werden typische Tätigkeiten aus verschiedenen Branchen in drei Expositionskategorien (1-3) in Bezug auf die Exposition mit mineralischen Stäuben eingeteilt. Tätigkeiten der Bauwirtschaft sind unter 7. aufgelistet. „Nasssägen von Mauersteinen in geringem zeitlichen Umfang (allgemeine Maurerarbeiten, Zuschneiden durch Verwender)“ (7.9.1) wird z.B. folgendermaßen eingestuft:

  • Expositionskategorie: 2 (mittlere Exposition)
  • Expositionswertebereich Quarz: 10 % 0,01 – 90 % 0,15, arithmetischer Mittelwert: 0,05 mg/m³
  • Expositionswertebereich A-Staub: 10 % 0,18 – 90 % 1,93, arithmetischer Mittelwert: 0,93 mg/m³

Der ursprüngliche AGW von 0,15 mg/m3 für Quarz wurde bei dieser Tätigkeit somit in 90 % der Fälle eingehalten.

Beim Vermörteln ist der AGW von 5 mg/m3 für die E-Stäube aus Portlandzement zu beachten.

REACH / CLP

Die REACH-Verordnung regelt die Herstellung, das Inverkehrbringen und den Umgang mit Industriechemikalien. Zur Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen, dient die CLP-Verordnung (Verordnung über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen), um ein hohes Schutzniveau für die menschliche Gesundheit und die Umwelt zu gewährleisten.

Wird ein Produkt nicht als Stoff oder Gemisch, sondern als Erzeugnis eingestuft, ist kein Sicherheitsdatenblatt (SDB) erforderlich und Gefahrstoffbezeichnungen entfallen. Lediglich besonders besorgniserregende Stoffe (SVHC) müssen ausgewiesen werden.

Porenbeton wird als Erzeugnis eingestuft. Aus diesem Grund ist kein Sicherheitsdatenblatt erforderlich und Gefahrstoffbezeichnungen entfallen.
Lediglich besonders besorgniserregende Stoffe (SVHC) müssen ausgewiesen werden. Produkt bezogene Informationen hierzu finden sich dann in den Sicherheitsdatenblättern (SDB) des Herstellers.

Einstufungen und Gesundheitsgefahren nach GISBAU

Das Gefahrstoff-Informationssystem der Berufsgenossenschaft BAU (GISBAU) enthält keine GISCODE-Einstufung für Porenbeton (GISCODES für Mörtel und Klebstoffe siehe dort). Informationen zu „Tätigkeiten mit quarzhaltigen mineralischen Stäuben“ sind unter www.wingis-online.de, Bau-Bereich „Hochbau“ zu finden.

Emissionen

Aus handelsüblichem Porenbeton emittieren - mit Ausnahme von Staub (siehe Rubrik „Arbeitshygienische Risiken“) - auch bei der Bearbeitung keine gesundheitsgefährdenden Substanzen.

Umweltrelevante Informationen

Energiebedarf

Der Energiebedarf für die Verarbeitung ist vernachlässigbar (ev. Mischen von Mörtel, Schneiden der Porenbetonsteine).

Wassergefährdung

Von einer Wassergefährdung im Zusammenhang mit der Porenbetonverarbeitung ist nicht auszugehen.

Transport

Auf Grund der zentralen Produktion ergeben sich je nach Entfernung vom Produktionsstandort ev. höhere Transportweiten.

Quellen

  • Technische Regeln für Gefahrstoffe TRGS 559 „Mineralischer Staub“:
    Online-Quelle [abgerufen im September 2013]
  • Technische Regeln für Gefahrstoffe TRGS 906 „Verzeichnis krebserzeugender Tätigkeiten oder Verfahren nach § 3 Abs. 2 Nr. 3 GefStoffV.
    Online-Quelle [abgerufen im September 2013]
  • BGIA-Report 8 /2006: Quarzexpositionen am Arbeitsplatz. Hrsg: Hauptverband der gewerblichen Berufsgenossenschaft (HVBG). Online-Quelle [abgerufen im September 2013]
  • Das Praxishandbuch Baustoffe. Steine. Erden. E.3.4 Staub (Leichtbaustoffe).
    Online-Quelle [abgerufen am 31.05.2013]
  • BG Bau (2011): Quarzstäube. Komerding, Jobst (Text). Kompetenzzentrum für Unternehmer – Fortbildung nach der DGUV-Vorschrift 2. Infoblatt 1. Februar 2011. Online-Quelle [abgerufen im September 2013]
  • WINGIS online: Zementhaltige Produkte, chromatarm. Online-Quelle [abgerufen im September 2013]
  • Homann, Martin (2008): Porenbeton Handbuch. Hrsg.: Bundesverband Porenbeton, 6. Auflage. Online-Quelle [abgerufen im August 2013]
Porenbeton

Nutzung

Umwelt- und Gesundheitsrisiken Neuzustand

Schadstoffabgabe / Emissionen in den Innenraum

Siehe Umwelt- und Gesundheitsrisiken bei bestimmungsgemäßer Nutzung

Schadstoffabgabe / Emissionen in den Außenraum

Es ist mit keiner Schadstoffabgabe bzw. mit keinen Emissionen in den Außenraum zu rechnen.

Umwelt- und Gesundheitsrisiken bei bestimmungsgemäßer Nutzung

Schadstoffabgabe / Emissionen in den Innenraum

Aufgrund der Abwesenheit flüchtiger Stoffe verhält sich Porenbeton sowohl im Neuzustand als auch während der Nutzungsphase unproblematisch hinsichtlich Emissionen von Schadstoffen in den Innenraum.

Bei den derzeit handelsüblichen Bauproduktgruppen sind aus Sicht des Strahlenschutzes keine Einschränkungen erforderlich. Mögliche Dosisbeiträge durch Gammastrahlung und Radonexhalation aus Baumaterialien siehe Radioaktivität.

Schadstoffabgabe / Emissionen in den Außenraum

Es ist mit keiner Schadstoffabgabe bzw. mit keinen Emissionen in den Außenraum zu rechnen.

Umwelt- und Gesundheitsrisiken im Schadensfall

Brandfall

Porenbeton ist als „nicht brennbar“ in Baustoffklasse A1 eingeordnet. Im Brandfall entstehen keine toxischen Gase oder Dämpfe aus Porenbeton.

Wassereinwirkung

Unter Wassereinwirkung reagiert Porenbeton schwach alkalisch. Es werden keine Stoffe ausgewaschen, die wassergefährdend sein können (Homann, 2008).

Beständigkeit Nutzungszustand

Unter der Rubrik Baustoff- und Gebäudedaten / Nutzungsdauern von Bauteilen findet sich auf dem Informationsportal Nachhaltiges Bauen eine Datenbank mit Nutzungsdauerangaben von ausgewählten Bauteilen des Hochbaus für den Leitfaden „Nachhaltiges Bauen“.
Datenbank als PDF

Außenwände aus Porenbeton fallen unter die Bauproduktgruppen Mauerwerkswand (Code Nr. 331.111) oder Betonwand (Code Nr. 331.211), für die eine Nutzungsdauer von mindestens 50 Jahren angegeben wird.

Innenwände aus Porenbeton fallen unter die Bauproduktgruppen Mauerwerkswand (Code Nr. 341.111 und 342.111) oder Betonwand (Code Nr. 341.211 und 342.211), für die eine Nutzungsdauer von mindestens 50 Jahren angegeben wird.

Decken aus Porenbeton fallen unter die Bauproduktgruppe Betondecken (Code Nr. 351.111), für die eine Nutzungsdauer von mindestens 50 Jahren angegeben wird.

Instandhaltung

Bei großen und tiefgehenden Beschädigungen muss Porenbeton mit einem gleichartigen Material ausgebessert werden. Bei tiefgreifenden Schäden wird die Schadstelle am besten geöffnet und rechteckig ausgeschnitten. In das Loch werden passgenaue Stücke gesetzt. Der Mörtel muss auf das Material abgestimmt sein. Es können dieselben Mörtel wie zur Verarbeitung von Porenbeton eingesetzt werden.

Quellen

Bresch, Carl-M. (2000): Kraftschlüssige Verbindung nach allen Seiten. Der Maler- und Lackierermeister 3/2000. Online-Quelle [abgerufen im September 2013]

Porenbeton

Nachnutzung

Umwelt- und Gesundheitsrisiko Rückbau

Beim Rückbau kann Staubentwicklung ein Risiko für Mensch und Umwelt darstellen.

Wiederverwendung

Die Wiederverwendung von Bauteilen aus Porenbeton ist prinzipiell möglich. (Porenbetonsteine oder -elemente müssen unzerstört ausgebaut werden können).

Stoffliche Verwertung

Bauteile aus Kalksandstein können mit konventionellen Verfahren abgebrochen und anschließend durch Brecher zerkleinert werden. Die stoffliche Verwertung von Abbruchmaterial aus Porenbeton erfolgt meist im Zuge der Aufbereitung und Wiederverwertung von Bauschutt. Für hochwertiges Recycling muss Porenbeton von den restlichen Baurestmassen getrennt gesammelt werden. Die stoffliche Verwertung von sauberem Abfallmaterial im Porenbetonwerk ist mehrfach im Kreislauf möglich. Auch die Verwertung in Form von Ölbinder oder Katzenstreu ist üblich.

Energetische Verwertung

Nicht relevant (kein Heizwert).

Beseitigung / Verhalten auf der Deponie

Eine Beseitigung von Abbruchabfällen ist auf Inertstoffdeponien möglich.

EAK-Abfallschlüssel

Porenbeton fällt unter die Abfallgruppe 17 Bau- und Abbruchabfälle. Einen eigenen Abfallcode für Porenbeton gibt es nicht. Am ähnlichsten sind sie in chemischer und mineralogischer Konsistenz der Untergruppe 17.01 Beton, Ziegel, Fliesen und Keramik.

Je nach Auslegung über die bessere Zugehörigkeit können sie folgenden Abfallgruppen zugeordnet werden:

17 01 01 Beton
17 01 07 Bau- und Abbruchabfälle - Gemische aus Beton, Ziegeln, Fliesen und Keramik
mit Ausnahme derjenigen, die unter 17 01 06 fallen.

Quellen

Abfallverzeichnis-Verordnung vom 10. Dezember 2001 (BGBl. I S. 3379), die zuletzt durch Artikel 5 Absatz 22 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist. Zugriff: Online-Quelle [abgerufen am 28.5.2013]